The Crystal Structure of Compounds with (N-P) ${ }_{n}$ Rings. V.* Dodecadimethylaminocyclohexaphosphazahexaene (Hexameric Phosphonitrilic Dimethylamide), $\mathbf{N}_{6} \mathbf{P}_{\mathbf{6}}\left(\mathbf{N M e}_{2}\right)_{12}$

By A.J.Wagner and Aafje Vos
Laboratorium voor Structuurchemie, Rijksuniversiteit Groningen, Bloemsingel 10, Groningen, The Netherlands

(Received 16 November 1967)

Abstract

The crystal and molecular structure of the cyclic phosphazene $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ has been determined by X-ray diffraction at $-170^{\circ} \mathrm{C}$. The intensities of 777 independent reflexions were measured on integrated equi-inclination Weissenberg photographs. The structure was derived from a three-dimensional Patterson synthesis and refined by anisotropic least-squares analysis ($R=0.07$). The cubic unit cell ($a=$ $16 \cdot 198 \pm 0.005 \AA$, space group Pa3) contains four molecules at special positions of symmetry $\overline{3}$. The molecules have a twelve-membered ring of alternating phosphorus and nitrogen atoms with two NMe_{2} groups attached to each phosphorus atom. The distances from the ring atoms to the mean plane of a molecule are $\Delta \mathrm{P}=0.56, \Delta \mathrm{~N}=0.39 \AA(\Delta \mathrm{P} / \Delta \mathrm{N}=1.49)$. There are two independent $\mathrm{P}-\mathrm{N}$ ring bonds, which are equal within experimental error. The average value (with individual standard deviation) is $1 \cdot 563$ (10) \AA. The dihedral angles belonging to the ring bonds are 17 and 97°. The two exocyclic $\mathrm{P}-\mathrm{N}$ bonds are equal (average value $1.669(10) \AA$) as well as the four $\mathrm{N}-\mathrm{C}$ bonds (average value 1.457 (16) \AA). The ring angle at nitrogen is $147.5(7)^{\circ}$. The endocyclic and exocyclic angle at phosphorus are 120.0 (5) and $102.9(5)^{\circ}$ respectively. The large ring angle at nitrogen and the difference between the ring conformations of the present molecule and the corresponding tetrameric molecule $\mathrm{N}_{4} \mathrm{P}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$ are discussed in terms of steric interactions between the methyl groups.

Introduction

Investigations in the field of cyclic phosphazenes have been restricted mainly to the monocyclic trimeric and tetrameric compounds $\mathrm{N}_{n} \mathrm{P}_{n} \mathrm{X}_{2 n}, n=3,4$ (for a review see Paddock, 1964), and to the polycyclic polymers of high molecular weight (see Allcock \& Best, 1964, and references therein). Only a few papers have dealt with the monocyclic compounds of medium ring size ($n=$ 5 to 20 approximately). Stokes, as early as 1897, described the preparation and properties of the chlorides $\mathrm{N}_{n} \mathrm{P}_{n} \mathrm{Cl}_{2 n}, n=5,6$. In 1960 Lund, Paddock, Proctor \& Searle obtained some of the higher members of this series. Chapman, Paddock, Paine, Searle \& Smith (1960) isolated the fluorides $\mathrm{N}_{n} \mathrm{P}_{n} \mathrm{~F}_{2 n}$ with $n=3$ up to 17 in a pure state. Several members ($n=$ 3 to 8) were obtained of the four series $\mathrm{N}_{n} \mathrm{P}_{n} \mathrm{X}_{2 n}$ with $\mathrm{X}=\mathrm{NMe}_{2}, \mathrm{OMe}, \mathrm{OCH}_{2} \mathrm{CF}_{3}$ or OPh (Allen, Oldfield, Paddock, Rallo, Serregi \& Todd, 1965). Recently the pentameric bromide $\mathrm{N}_{5} \mathrm{P}_{5} \mathrm{Br}_{10}$ has been synthesized (Coxon, Sowerby \& Trauter, 1965) and complex formation between hexamethylbenzene and various cyclophosphazenes, including pentameric and hexameric compounds, has been studied (Das, Shaw, Smith \& Thakur, 1966).
Accurate determinations of the molecular structures of some lower phosphazenes ($n=3,4$) by X-ray diffraction have been of great help in discussions on the chemical bonding in these compounds. Since such

[^0]studies are not available for molecules with larger rings, we undertook the crystal structure analysis of a hexameric cyclic phosphazene, $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ (I). Some

(I)
results of this work have been published in a short communication (Wagner \& Vos, 1965). Recently a preliminary note on the structure of a second mediumsized ring compound, $\mathrm{N}_{5} \mathrm{P}_{5} \mathrm{Cl}_{10}$, has appeared (Schlueter \& Jacobson, 1966).

Experimental

Crystals of $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ suitable for the X-ray work were obtained by slow evaporation of a solution in benzene. The crystals were colourless and transparent and had the shape of octahedra with edges of $0 \cdot 1$ to 0.3 mm . The compound crystallizes in the cubic space group No. 205, Pa3 ($h k 0$ systematically absent for h
odd) with a unit-cell edge of $16.4 \AA$. The measured density of the crystals is $1.20 \mathrm{~g} . \mathrm{cm}^{-3}$; the density calculated for $Z=4$ is $1.22 \mathrm{~g} . \mathrm{cm}^{-3}$.

Since at room temperature only reflexions with $(\sin \theta) / \lambda<0.30 \AA^{-1}$ were observed, the structure determination was carried out at low temperature $\left(-170^{\circ} \mathrm{C}\right)$. Reflexions could be measured then up to $(\sin \theta) / \lambda=$ $0.63 \AA^{-1}$, the space group is the same as at room temperature and the unit cell edge is $16 \cdot 198 \pm 0.005 \AA$. This value was determined from a Weissenberg photograph taken at $-170^{\circ} \mathrm{C}$, on which a pattern of NaCl spots was superposed at room temperature for calibration purposes $\left[\lambda\left(\mathrm{Cu} \quad K \alpha_{1}\right)=1.54051, \lambda\left(\mathrm{Cu} . K \alpha_{2}\right)=\right.$ 1.54433 and $a(\mathrm{NaCl})=5.6396 \AA$]. The intensity data were recorded on photographic films with Ni -filtered Cu -radiation. Integrated equi-inclination Weissenbergfilms were made of 13 layers about the cubic axis. The multiple-film technique was applied. The integration area of the spots was chosen in such a way that the intensities of all reflexions could be measured with a densitometer, either as $\alpha_{1}+\alpha_{2}$ or as α_{1} (Wagner, 1966). The intensities were corrected in the usual way for the Lorentz and polarization effect. No correction for absorption $\left[\mu(\mathrm{Cu})=25 \mathrm{~cm}^{-1}\right.$] was applied. $|F|^{2}$ values obtained from different levels were put on the same relative scale by using the relations $|F(h k l)|^{2}=|F(l h k)|^{2}=$ $|F(k l h)|^{2}$. The average of the $|F|^{2}$ values of equivalent reflexions was used in the analysis of the structure. Comparison of the individual structure factor magnitudes $\mid F$ (ind) \mid with their average value $\mid F($ av $) \mid$ gave $\Sigma|\mid F($ ind $)|-\mid F($ av $)| | / \Sigma \mid F($ av $) \mid=0.06$.

Determination of the structure

In space group Pa3, depicted in Fig. 1, there is one special position with multiplicity four, which consists of the centres of symmetry on the threefold inversion axes. We started the structure determination with the assumption that the centres of the four molecules $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ are at these sites and that each molecule exhibits threefold inversion symmetry. This implies that only one of the twenty-four units $\mathrm{NP}\left(\mathrm{NMe}_{2}\right)_{2}$ is crystallographically independent.

The structure was derived from a three-dimensional Patterson synthesis, the sections of which were calculated perpendicular to the $\overline{3}$ axis in the [111] direction. To this end a system of orthogonal axes $\mathbf{A}, \mathbf{B}, \mathbf{C}$ was chosen, which was related to the cubic system \mathbf{a}, \mathbf{b}, \mathbf{c} by $\mathbf{A}=\mathbf{a}-\mathbf{c}, \mathbf{B}=-\mathbf{a}+2 \mathbf{b}-\mathbf{c}, \mathbf{C}=\mathbf{a}+\mathbf{b}+\mathbf{c} \equiv[111]$.

As the maxima corresponding to $\mathrm{P}-\mathrm{P}$ vectors predominated in the Patterson map, the coordinates of the one independent phosphorus atom could easily be determined. Thereafter the positions of the three nitrogen atoms and of two of the four carbon atoms were found, use being made of the $\mathrm{P}-\mathrm{N}$ and $\mathrm{P}-\mathrm{C}$ maxima in the Patterson map and of reasonable values for the bond lengths and angles. The remaining two carbon atoms were found from a three-dimensional Fourier synthesis.

After initial least-squares refinement the positions of all twelve hydrogen atoms could be found from a difference Fourier map of low order reflexions ($\sin \theta / \lambda<0.4 \AA^{-1}$). In the further least-squares refinement the positions obtained for the hydrogen atoms were kept fixed; the temperature factor of the hydrogen atoms was assumed to be $\exp \left[-2.5 \sin ^{2} \theta / \lambda^{2}\right]$. For the remaining atoms the coordinates were refined as well as the parameters of the anisotropic temperature factor $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+\cdots+2 h k a^{*} b^{*} U_{12}+\right.\right.$ $\ldots)]$. The least-squares program used worked according to the block-diagonal approximation (Cruickshank, 1961a). The refinement was based on 775 observed independent reflexions. The atomic scattering factors were taken from Moore (1963) and the weighting scheme used was $w^{-1}=1+\{(\mid F(\text { obs }) \mid-41) / 21\}^{2}$. At the end of the refinement R had dropped to 0.07 . In the last cycle the biggest shift in a coordinate was less than $0 \cdot 1$ times its standard deviation.

Final atomic coordinates and temperature factor parameters are listed in Tables 1 and 2. The standard deviations calculated by the least-squares program are given in parentheses. The observed and calculated structure factors are compared in Table 3.

Inspection of Table 2 shows that the molecule cannot be regarded as a rigid body. The relatively small thermal motion of the phosphorus atom in comparison to the vibration of the nitrogen atoms indicates that librations may take place of the PN_{4} tetrahedron about the phosphorus atom. The molecule thus appears to be very flexible. No libration corrections were applied to the coordinates (Cruickshank, 1956).

Fig.1. Symmetry elements and equivalent positions of space group Pa3. The arrows with heavy heads indicate threefold axes in the $\langle 111\rangle$ directions. Solid lines indicate the unit cell.

Table 1. Fractional atomic coordinates and standard deviations

	x	y	z
$\mathrm{P}(1)$	$0.0352(1)$	$0.0648(1)$	$-0.1593(1)$
$\mathrm{N}(1)$	$0.0960(3)$	$-0.0044(3)$	$-0.1310(3)$
$\mathrm{N}(2)$	$-0.0410(3)$	$0.0146(3)$	$-0.2064(3)$
$\mathrm{N}(3)$	$0.0755(3)$	$0.1222(3)$	$-0.2353(3)$
$\mathrm{C}(1)$	$-0.0981(4)$	$0.0600(4)$	$-0.2588(4)$
$\mathrm{C}(2)$	$-0.0410(4)$	$-0.0739(4)$	$-0.2195(4)$
$\mathrm{C}(3)$	$0.1198(4)$	$0.1988(4)$	$-0.2179(4)$

$\mathrm{C}(4)$
$\mathrm{H}(1)$
$\mathrm{H}(2)$
$\mathrm{H}(3)$
$\mathrm{H}(4)$
$\mathrm{H}(5)$
$\mathrm{H}(6)$
$\mathrm{H}(7)$
$\mathrm{H}(8)$
$\mathrm{H}(9)$
$\mathrm{H}(10)$
$\mathrm{H}(11)$
$\mathrm{H}(12)$

x	y	z
$0.1140(5)$	$0.0769(5)$	$-0.3032(4)$
-0.09	0.05	-0.32
-0.09	0.11	-0.26
-0.15	0.03	-0.23
-0.11	-0.10	-0.21
-0.02	-0.10	-0.17
-0.02	-0.08	-0.27
0.17	0.18	-0.21
0.08	0.23	-0.19
0.10	0.24	-0.26
0.12	0.10	-0.37
0.15	0.05	-0.29
0.07	0.04	-0.32

Description of the structure

The crystal structure is composed of molecules $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$, which are placed at the corners and centres of the faces of a cubic unit cell. The molecular symmetry is $\overline{3}$. The molecules have the overall shape of a spheroid as is illustrated by Fig. 2 and by the distances from the center (M) of the molecule to the independent carbon atoms (methyl groups): $M \cdots \mathrm{C}(1)$ $=4 \cdot 59, \quad M \cdots \mathrm{C}(2)=3 \cdot 81, \quad M \cdots \mathrm{C}(3)=5 \cdot 16 \quad$ and $M \cdots C(4)=5 \cdot 40 \AA$.

The shortest intermolecular contacts are found between the carbon atoms (methyl groups). Four of these distances are shorter than $4.0 \AA$, the shortest one being $3.79 \AA$. This is just equal to the value $3 \cdot 8 \AA$, expected from the van der Waals radius of a methyl group ($1.9 \AA$; Pauling, 1960).

The most interesting part of the molecule is its twelve-membered ring of alternating phosphorus and nitrogen atoms. The ring is heavily puckered. The ring bonds have dihedral angles of 17 and 97° alternately. The distances from the phosphorus and nitrogen ring atoms to the mean molecular plane are 0.56 and $0.39 \AA$ respectively. This implies that one of the two independent ring bonds is nearly parallel to the mean plane of the molecule, whereas the other one intersects this plane [Fig. 2(b)]. The shape of the twelve-membered ring is thus comparable to the boat form of an eightmembered ring. It may be noted, however, that in the present molecule the nitrogen atoms are closer to the average molecular plane than the phosphorus atoms, whereas in the known tetrameric cyclophosphazenes (Table 5) the opposite is true. To each phosphorus atom there are attached two dimethylamino groups. One of the two $\mathrm{P}-\mathrm{N}$ (exo) bonds is lying approximately

Table 2. Thermal parameters and standard deviations $\left(\AA^{2} \times 10^{-4}\right)$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{31}	U_{12}
	$134(7)$	$129(6)$	$124(6)$	$0(6)$	$8(6)$	$6(6)$
$\mathrm{P}(1)$	$228(29)$	$237(27)$	$260(29)$	$-18(23)$	$-132(23)$	$43(24)$
$\mathrm{N}(1)$	$262(28)$	$162(24)$	$216(25)$	$13(20)$	$-59(22)$	$33(23)$
$\mathrm{N}(2)$	$277(30)$	$202(25)$	$225(27)$	$-30(22)$	$84(24)$	$-72(24)$
$\mathrm{N}(3)$	$272(34)$	$271(32)$	$314(34)$	$49(32)$	$-86(29)$	$35(31)$
$\mathrm{C}(1)$	$293(25)$	$246(34)$	$406(38)$	$-4(31)$	$-80(31)$	$10(31)$
$\mathrm{C}(2)$	$293(35)$	$208(34)$	$319(37)$	$88(30)$	$10(31)$	$-38(30)$
$\mathrm{C}(3)$	$293(36)$	$208)$				
$\mathrm{C}(4)$	$510(47)$	$426(45)$	$202(32)$	$-15(32)$	$119(34)$	$-25(39)$

parallel to the mean plane of the ring, the other one is nearly normal to it.

The intramolecular atomic distances and the valence angles are given in Table 4. In estimating their standard deviations the standard deviations obtained from the least-squares residuals have been multiplied by two.

The two crystallographically non-equivalent ring bonds, $\mathrm{P}-\mathrm{N}($ endo $)$, are equal within experimental error. The same is true for the exocyclic bonds $\mathrm{P}-\mathrm{N}-$ (exo). The average length of the $\mathrm{P}-\mathrm{N}($ endo) bonds, $1.56 \AA$, is $0.2 \AA$ smaller than the length of a $\mathrm{P}-\mathrm{N}$ single bond ($1.77 \AA$, Hobbs, Corbridge \& Raistrick, 1953; Cruickshank, 1964). Such a shortening, indicating a strong double bond character, is generally observed in phosphazene rings (Table 5). The average length of the $\mathrm{P}-\mathrm{N}($ exo $)$ bonds, $1.67 \AA$, indicates that
there is also some double bonding to the nitrogen atoms outside the ring. The length of the $\mathrm{P}-\mathrm{N}($ exo $)$ bonds is comparable to the length of the ring bonds in phosphazane structures (Migchelsen, Olthof \& Vos, 1965; Mani \& Wagner, 1968).

The differences between the four independent $\mathrm{N}-\mathrm{C}$ bonds are not significant. The average value of $1.46 \AA$ is equal to the $\mathrm{N}-\mathrm{C}$ bond length found in several aliphatic amines (Sutton, 1958). For the C-H distances approximate values, ranging from 0.9 to $1.2 \AA$, have been calculated from the hydrogen positions observed in the difference Fourier map.

As to the valence angles the ring angle at nitrogen, 147.5°, is considerably larger than the corresponding angles in other cyclic non-planar phosphazenes (Table 5). The environment of phosphorus is approximately

Table 3. Observed and calculated structure factors
The columns are $k, 10 F_{o}$ and $10 F_{c}$. Reflexions indicated by an asterisk are not taken into account in the refinement.

 $\begin{array}{ll}4 & 364 \\ 6 & 787 \\ 7 & 258\end{array}$ $\begin{array}{rr}4 & 364 \\ 6 & 787 \\ 7 & 254 \\ 10 & 271 \\ 13 & 375\end{array}$
 +に,

$\begin{array}{lll}2 & 18 \\ 5 & 5 & 3\end{array}$
$\begin{array}{rrrr}6 & 115 & 1 \\ 10 & 385 & -3 \\ 19, K & 2\end{array}$
5
7
$\begin{array}{ll}1 & \\ 4 \\ 4 \\ 4\end{array}$
$\begin{array}{ll}234 & 3 \\ 271 & 4 \\ 330 & 3 \\ 398 & 6 \\ 292 & 7\end{array}$
0 न

\sim
$\begin{array}{rr}4 & 312 \\ 5 & 321 \\ 6 & 369 \\ 8 & 482 \\ 10 & 646 \\ 13 & 503\end{array}$ ㅇ․oのN

Table 3 (cont.)

Table 4. Intramolecular distances and angles

$\mathrm{P}(1)-\mathrm{N}(1)$	$1.561(10) \AA$
$\mathrm{P}\left(1^{\prime}\right)-\mathrm{N}(1)$	$1.565(10)$
$\mathrm{P}(1)-\mathrm{N}(2)$	$1.663(10)$
$\mathrm{P}(1)-\mathrm{N}(3)$	$1.675(10)$
$\mathrm{N}(2)-\mathrm{C}(1)$	$1.455(16)$
$\mathrm{N}(2)-\mathrm{C}(2)$	$1.449(16)$
$\mathrm{N}(3)-\mathrm{C}(3)$	$1.461(16)$
$\mathrm{N}(3)-\mathrm{C}(4)$	$1.462(16)$
$\mathrm{P}(1) \cdots \mathrm{P}\left(1^{\prime}\right)$	$3.001(4)$
$\mathrm{P}(1) \cdots \mathrm{P}\left(1^{\prime \prime}\right)$	$4.830(4)$
$\mathrm{N}(1) \cdots \mathrm{N}\left(1^{\prime}\right)$	$2.708(14)$
$\mathrm{N}(1) \cdots \mathrm{N}\left(1^{\prime \prime}\right)$	$4.513(14)$

$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}\left(1^{\prime \prime \prime}\right)$	$120 \cdot 0(5)^{\circ}$
$\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{P}\left(1^{\prime}\right)$	$147 \cdot 5(7)$
$\mathrm{N}(2)-\mathrm{P}(1)-\mathrm{N}(3)$	$102 \cdot 9(5)$
$\mathrm{N}(2)-\mathrm{P}(1)-\mathrm{N}(1)$	$104 \cdot 6(5)$
$\mathrm{N}(2)-\mathrm{P}(1)-\mathrm{N}\left(1^{\prime \prime \prime}\right)$	$113 \cdot 5(5)$
$\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{N}(1)$	$111 \cdot 6(5)$
$\mathrm{N}(3)-\mathrm{P}(1)-\mathrm{N}\left(1^{\prime \prime \prime}\right)$	$103 \cdot 0(5)$
$\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{C}(1)$	$119.5(8)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	$114.6(10)$
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{P}(1)$	$123 \cdot 4(8)$
$\mathrm{P}(1)-\mathrm{N}(3)-\mathrm{C}(3)$	$121.4(8)$
$\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{C}(4)$	$111 \cdot 2(9)$
$\mathrm{C}(4)-\mathrm{N}(3)-\mathrm{P}(1)$	$116 \cdot 1(8)$

tetrahedral. As usual the exocyclic angle is somewhat smaller and the endocyclic one somewhat larger than the tetrahedral angle. Finally, the configurations at $\mathrm{N}(2)$ and $\mathrm{N}(3)$ are almost planar. This is shown by the sum of the valence angles around these atoms, which is 357.5° for $\mathrm{N}(2)$ and 348.7° for $\mathrm{N}(3)$. The approximate planarity at the exocyclic nitrogen atoms is consistent with the shortening of the $\mathrm{P}-\mathrm{N}($ exo $)$ bonds mentioned above.

Discussion

Ring conformation

The ring conformation of a cyclic molecule is fully defined by giving the lengths of the ring bonds, the
dihedral angles of the ring bonds and the valence angles in the ring. If, however, only rings with an equal number of atoms and with approximately the same bond lengths and valence angles are to be compared, the dihedral angles alone may serve to characterize the conformations of the rings. This is the case for the nonplanar tetrameric cyclophosphazenes of Table 5.

For the present purpose, comparison of the ring conformation of the hexameric phosphazene $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ with those of the known tetrameric phosphazenes (see below), the dihedral angles are not appropriate, since rings of different size are involved. We therefore made use of a parameter, originally introduced by Paddock (1964), which we called the

displacement parameter and which is defined as the ratio $\Delta \mathrm{P} / \Delta \mathrm{N}$ of the displacements $\Delta \mathrm{P}$ and $\Delta \mathrm{N}$ of the phosphorus and nitrogen atoms from the mean plane of the ring. It should be noted that the displacement parameter can be defined only for molecules, in which all phosphorus (nitrogen) atoms have the same distance $\Delta \mathrm{P}(\Delta \mathrm{N})$ to the mean molecular plane. This is e.g. the case for molecules with rotation-inversion symmetry. The values of $\Delta \mathrm{P}, \Delta \mathrm{N}$ and $\Delta \mathrm{P} / \Delta \mathrm{N}$ for the cyclophosphazenes, which satisfy the condition just stated, have been added to Table 5.

The displacement parameter gives a picture of the conformation of a ring, which is very easily imaginable. For example, for an eight-membered ring $\Delta \mathrm{P} / \Delta \mathrm{N}=1$, if the conformation is boat-shaped with equal displacements of both P and N . The parameter has values between 1 and 0 , if the conformation passes on to a saddle form with the P atoms more coplanar than the N , whereas values >1 are found for a second type of saddle form, in which the N atoms are more coplanar than the P .

Steric effects

An outstanding feature of the structure of $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ is the large endocyclic angle PNP $\left(147.5^{\circ}\right)$. It is more than 10° larger than the corresponding angle in the non-planar tetrameric phosphazenes (133° on the average). The equally large angle in the planar tetramer $\mathrm{N}_{4} \mathrm{P}_{4} \mathrm{~F}_{8}$ may be ascribed to the strongly electronegative character of the fluorine atoms. Electronegativity of the ligands cannot, however, be the reason of the widening of the angle PNP in $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$, since in $\mathrm{N}_{4} \mathrm{P}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$ this angle has the normal value. We suspected that in the hexamer the large angle is due to steric effects. To evaluate this idea more quantitatively, we measured the distances between the carbon atoms in a model of the molecule in which the angle PNP had been reduced from 148 to 133°. The remaining valence angles, the bond lengths and the ring conformation as measured by $\Delta \mathrm{P} / \Delta \mathrm{N}$ were kept unchanged. Since in combination with the reduced angle PNP a conformation with some other $\Delta \mathrm{P} / \Delta \mathrm{N}$ value (e.g. as observed in the tetramers) might be more favourable, similar measurements were made on models with $\Delta \mathrm{P} / \Delta \mathrm{N}$ equal to 0.75 and 0.35 . The results are presented in Table 6. In each of the models tried at least one carbon. . .carbon distance is inacceptably short. For the model with $\Delta \mathrm{P} / \Delta \mathrm{N}>1$ the short distance is of the type $\mathrm{C} \cdots \mathrm{C}^{\prime \prime}$, whereas for the models with $\Delta \mathrm{P} / \Delta \mathrm{N}<1$, it is of type $\mathrm{C} . . \mathrm{C}^{\prime}$. These results were taken as evidence that in $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$, due to the bulky NMe_{2} groups, no conformation can accomodate a ring angle at nitrogen smaller than 148°.

It should be mentioned that we have observed a similar, though smaller, effect in the structure of $\mathrm{N}_{4} \mathrm{P}_{4} \mathrm{Cl}_{8}(\mathrm{~T})$ (Wagner \& Vos, 1968). In this molecule the two independent angles PNP are 138 and 134°.

(a)

(b)

Fig.3. Comparison of (a) hexameric and (b) tetrameric dimethylaminocyclophosphazene.

The difference is significant. It was shown that, as a consequence of the chair form of the molecule, for a smaller value than 138° some of the chlorine atoms at neighbouring phosphorus atoms would come too close together.

There is a second point which may be discussed in terms of steric effects, viz. the difference between the ring conformations of $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ and $\mathrm{N}_{4} \mathrm{P}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$. This difference is shown clearly by the mutual orientation of NMe_{2} groups on adjacent phosphorus atoms in the two molecules (Fig. 3). Non-bonded distances between carbon atoms, calculated for the two molecules and measured in various models derived from the molecules by changing the ring conformation, are collected in Table 7. In the two molecules the C...C distances of each type are, surprisingly, the same, suggesting that the ring conformations of $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ and $\mathrm{N}_{4} \mathrm{P}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$ are equally favourable from the point of view of methyl... methyl interactions. On the other hand some of the C...C distances in the models are always shorter than in the molecules themselves, indicating that changes in the ring conformation lead to less favourable steric conditions for both $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ and $\mathrm{N}_{4} \mathrm{P}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$. One is thus led to the tentative conclusion that in phosphazene rings with bulky ligands steric factors are of preponderant importance in determining the shape of the central ring.

Chemical bonding

It is generally accepted that in cyclic phosphazenes a double system of π molecular orbitals exists, extending

Table 6. $\mathrm{C} \cdot \mathrm{C}$ distances in $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ and in models of the molecule with angle PNP equal to 133°

	$\triangle \mathrm{P} / \Delta \mathrm{N}$	Angle PNP	C ${ }^{\text {. }} \mathrm{C}^{*}$		C $\cdots{ }^{\text {c }}$ *	
			s	a	s	a
$\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$	1.49	$148{ }^{\circ}$	$3.78 \AA$	5.79 Å	3.77 §	$7.32 \AA$
Model	1.49	133	$4 \cdot 2$	5.8	$1 \cdot 8$	6.2
Model	0.75	133	$2 \cdot 8$	$5 \cdot 4$	3.0	7.0
Model	$0 \cdot 35$	133	2.4	$5 \cdot 2$	$5 \cdot 0$	$7 \cdot 8$

* $\mathrm{C} \cdots \mathrm{C}$ distances are characterized according to the labeling of the atoms in Fig. 3.
s : shortest distance.
a : average distance.

Table 7. C. . C distances in hexameric and tetrameric dimethylaminocyclophosphazene and in models with different ring conformations

$\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$	$\Delta \mathrm{P} / \Delta \mathrm{N}$	Angle PNP	C $\cdot \cdots{ }^{*}$		C $\cdot \cdot{ }^{\prime}{ }^{*}$		$\mathrm{C} \cdot \mathrm{C}^{\prime \prime}$ *	
			s	a	s	a	s	a
	1.49	148°	$3.52 \AA$	$4 \cdot 16 \AA$	3.78 A	5.79 A	3.77 §	$7.32 \AA$
Model	$0 \cdot 35$	148			$2 \cdot 6$	$5 \cdot 2$	$6 \cdot 4$	8.2
Model	$0 \cdot 75$	148			3.0	$5 \cdot 3$	$5 \cdot 6$	8.0
$\mathrm{N}_{4} \mathrm{P}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$	$0 \cdot 35$	133	$3 \cdot 54$	$4 \cdot 15$	$3 \cdot 81$	$5 \cdot 81$	3.99	7.49
Model	1.49	133			$3 \cdot 8$	6.0	2.8	6.4
Model	0.75	133			3.0	$5 \cdot 8$	$4 \cdot 4$	$7 \cdot 2$

around the ring and sometimes, depending on the nature of the ligands, also to the ligands (Cruickshank, 1961b; Craig \& Paddock, 1962). The π molecular orbitals originate from overlap of d orbitals on phosphorus with p orbitals (and $s p^{2}$ hybrids) on nitrogen ($d \pi-p \pi$ overlap). Cruickshank (1961b) assumes that because of the approximately tetrahedral environment of phosphorus two equi-energetic d orbitals, $d\left(x^{2}-y^{2}\right)$ and $d\left(z^{2}\right)$, are of much more importance for π bonding than the remaining three. He states that in non-planar rings linear combination of these two d orbitals may give two hybrids at phosphorus, which are strongly bonding and which overlap equally well with the orbitals of the neighbouring nitrogen atoms, even when the dihedral angles of the two neighbouring P-N bonds are not equal. It is thus expected that also in non-planar phosphazene rings, provided the ring is substituted uniformly, short and equal lengths are found for crystallographically non-equivalent neighbouring $\mathrm{P}-\mathrm{N}$ bonds. This has been observed indeed in all cases investigated so far and the present molecule $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ is no exception. It may be noted, however, that in this case the dihedral angles of the ring bonds show a larger difference than in other cyclophosphazenes. Their values, close to 0 and 90°, mean that the two hybrids at phosphorus are rather pure $d\left(x^{2}-y^{2}\right)$ and $d\left(z^{2}\right)$ orbitals.

The $\mathrm{P}-\mathrm{N}$ ring bond in $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ is $0.02 \AA$ shorter than in $\mathrm{N}_{4} \mathrm{P}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$. The widening of the ring angle PNP in $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$, caused by steric factors as discussed above, may be related to the shortening of the $\mathrm{P}-\mathrm{N}$ bond. It is expected that in $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ owing to the larger angle PNP, the lone pair orbital at nitrogen has more p character (and the σ orbitals to the neighbouring phosphorus atoms less) than in $\mathrm{N}_{4} \mathrm{P}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$. It is further expected that in $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$ the nitrogen lone pair orbital gives a better overlap with the d orbitals at phosphorus than in $\mathrm{N}_{4} \mathrm{P}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$. These differences result in greater strength of the π bonds in $\mathrm{N}_{6} \mathrm{P}_{6}\left(\mathrm{NMe}_{2}\right)_{12}$.

A sample of the substance was kindly provided by Prof. N. L. Paddock and Mr D. J. Oldfield. We are indebted to Mr F. van Bolhuis for his aid in constructing the low temperature unit of the Weissenberg camera. Computations were done on the TR4 computer of the Computing Center of the University of Groningen with programs written by R. Olthof-Hazekamp, J. N. Jansonius, J. H. Palm and W. J. A. M. Peterse. We are grateful to Prof. Wiebenga for his stimulating interest throughout this investigation.

References

Allcock, H. R. \& Best, R. J. (1964). Canad. J. Chem. 42, 447.

Allen, G., Oldfield, D. J., Paddock, N. L., Rallo, F., Serregi, J. \& Todd, S. M. (1965). Chem. \& Ind. p. 1032. Ansell, G. B. \& Bullen, G. J. (1966). Chem. Comm. p. 430.

Bullen, G. J. (1962). J. Chem. Soc. p. 3193.
Chapman, A. C., Paddock, N. L., Paine, D. H., Searle, H. T. \& Smith, D. R. (1960). J. Chem. Soc. p. 3608. Coxon, G. E., Sowerby, D. B. \& Trauter, G. C. (1965). J. Chem. Soc. p. 5697.

Craig, D. P. \& Paddock, N. L. (1962). J. Chem. Soc. p. 4118.

Cruickshank, D. W. J. (1956). Acta Cryst. 9, 757.
Cruickshank, D. W. J. (1961a). In Computing Methods and the Phase Problem in X-ray Crystal Analysis. Oxford: Pergamon Press.
Cruickshank, D. W. J. (1961b). J. Chem. Soc. p. 5486.
Cruickshank, D. W. J. (1964). Acta Cryst. 17, 671.
Das, S. K., Shaw, R. A., Smith, B. C. \& Thakur, C. P. (1966). Chem. Comm. p. 33.

Dougill, M. W. (1961). J. Chem. Soc. p. 5471.
Dougill, M. W. (1963). J. Chem. Soc. p. 3211.
Giglio, E. \& Puliti, R. (1967). Acta Cryst. 22, 304.
Hazekamp, R., Migchelsen, T. \& Vos, A. (1962). Acta Cryst. 15, 539.
Hobbs, E., Corbridge, D. E. C. \& Raistrick, B. (1953). Acta Cryst. 6, 621.
Lund, L. G., Paddock, N. L., Proctor, J. E. \& Searle, H. T. (1960). J. Chem. Soc. p. 2542.

Mani, N. V., Ahmed, F. R. \& Barnes, W. H. (1965). Acta Cryst. 19, 693.
Mani, N. V., Ahmed, F. R. \& Barnes, W. H. (1966). Acta Cryst. 21, 375.
Mani, N. V. \& Wagner, A. J. (1968). Chem. Comm. p. 658.
McGeachin, H. McD. \& Tromans, F. R. (1961). J. Chem. Soc. p. 4777.
Migchelsen, T., Olthof, R. \& Vos, A. (1965). Acta Cryst. 19, 603.
Moore, F. H. (1963). Acta Cryst. 16, 1169.
Paddock, N. L. (1964). Quart. Rev. Chem. Soc. Lond. 18, 2, 168.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
Schlueter, A. W. \& Jacobson, R. A. (1966). J. Amer. Chem. Soc. 88, 2051.
Stokes, H. N. (1897). Amer. Chem. J. 19, 782.
Sutton, L. E. (1958). Tables of Interatomic Distances and Configurations in Molecules and Ions. Spec. Publ. No. 11. London: The Chemical Society.
Wagner, A. J. \& Vos, A. (1965). Rec. Trav, chim. PaysBas, 84, 603.
WAGNER, A. J. (1966). Thesis, Univ. of Groningen.
Wagner, A. J. \& Vos, A. (1968). Acta Cryst. B24, 707
Wilson, A. \& Carroll, D. F. (1960). J. Chem. Soc. p. 2548.

[^0]: * Part IV: Wagner, A. J. \& Vos, A. Acta Cryst. (1968) B 24, 707.

